skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mohan, K. Aditya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Limited-Angle Computed Tomography (LACT) is a nondestructive 3D imaging technique used in a variety of applications ranging from security to medicine. The limited angle coverage in LACT is often a dominant source of severe artifacts in the reconstructed images, making it a challenging imaging inverse problem. Diffusion models are a recent class of deep generative models for synthesizing realistic images using image denoisers. In this work, we present DOLCE as the first framework for integrating conditionally-trained diffusion models and explicit physical measurement models for solving imaging inverse problems. DOLCE achieves the SOTA performance in highly ill-posed LACT by alternating between the data-fidelity and sampling updates of a diffusion model conditioned on the transformed sinogram. We show through extensive experimentation that unlike existing methods, DOLCE can synthesize high-quality and structurally coherent 3D volumes by using only 2D conditionally pre-trained diffusion models. We further show on several challenging real LACT datasets that the same pretrained DOLCE model achieves the SOTA performance on drastically different types of images. 
    more » « less